
Efficient Training of Foosball Agents Using
Multi-Agent Competition

Adriatik Gashi, Elke Hergenröther, Gunter Grieser

Darmstadt University of Applied Sciences
Schöfferstraße 3, 64295 Darmstadt

Germany

Abstract. In this work, an efficient training concept for training striker
and goalkeeper Foosball agents using Deep Reinforcement Learning is
designed and implemented. Based on a literature review, individual com-
ponents such as the observation and action space are defined and suitable
configurations for efficient learning are determined by experiments. Fur-
thermore, different aspects for the modeling of multi-agent training are
discussed on the basis of further literature research and a concept is
derived from this for the use in the Foosball domain. Using only two
consumer laptops, it could be shown that the use of multiple agents is
also suitable in resource constraint domains. Despite an imbalance in the
difficulty of the tasks of striker and goalkeeper agents, both agents were
able to learn individual strategies while taking the respective opponent
into account.

Keywords: reinforcement learning, multi-agent training, Foosball agents

1 Introduction

In recent years, deep reinforcement learning (DRL) has been successfully used
in various areas like board- or real-time strategy games [30, 6]. These successes
were achieved using multiple agents training with each other. By modeling com-
petitions, agents could be trained with each other to develop strategies against
competitors. At the same time, the aforementioned works have a high compu-
tational cost in common. AlphaGo used only for the match against the world
champion in Go a total of 1920 CPUs and 280 GPUs [30]. For OpenAI Five,
the agents were trained with a training duration of ten months and a training
volume of approximately two million processed images every two seconds [6].
This raises the question of the extent to which training agents with each other

This is a preprint of the following chapter: A. Gashi, E. Hergenröther, G. Grieser,
Efficient Training of Foosball Agents Using Multi-Agent Competition, published in
Intelligent Computing, edited by Arai, K., 2023, Springer reproduced with permis-
sion of Springer Nature Switzerland AG 2023. The final authenticated version is
available online at: https://doi.org/10.1007/978-3-031-37717-4 30

2 A. Gashi, E. Hergenröther, G. Grieser

is possible with limited computational resources. For this purpose, the semi-
automated Bosch Rexroth Foosball table from Figure 1 is investigated as a
problem domain within the scope of this work. A simulation of the Foosball

Fig. 1. Semi-automated Bosch Rexroth Foosball table [9].

table is used to train DRL agents to operate the striker- and goalkeeper rods
using multi-agent competition. Two consumer laptops are used for the training
of the agents. Therefore, a training concept is developed that considers the lim-
ited computational resources available. To accomplish this, we first formalize the
environment as a single-agent Markov Decission Process (MDP) from the per-
spective of the striker-agent in section 4, selecting a suitable learning algorithm
and evaluating different configurations by experiment. Afterwards, we extend
the MDP to a Markov Game to contain the goalkeeper-agent in section 5, ad-
justing the training process accordingly.
Our results show that striker- and goalkeeper agents were able to develop of-
fensive as well as defensive strategies in the multi-agent setting. While the task
design showed an imbalance in the difficulty for the rods, both agents were able
to develop behaviour to successfully shoot goals and control the ball with high
precision. This suggests that using multi-agent competition to develop complex
behaviour with relatively small computational resources is possible.

2 Related work

First, related work with respect to the Foosball domain will be presented, fol-
lowed by works that used simulation environments to train agents.
In [34] an automated Foosball table was developed, whose control was imple-
mented by means of a decision tree. In addition, a simulation implemented by
the authors allows testing of different strategies by using two agents. [37] and [13]
are other Foosball examples, where a Foosball rod was taught different action
sequences by imitating human actions, and a method for tracking the ball using
a camera was developed, respectively. In [9], DRL agents were used to teach a

Foosball agents 3

striker rod to score goals. The focus of their work was the ”Sim-to-Real” domain,
where the Foosball example was chosen to represent a complex manufacturing-
like process, which was optimized using DRL. Using a simulation of the foosball
table, the authors were able to train agents that successfully learned demanding
Foosball control strategies using sparse reward signals. However, in contrast to
this work, only one agent is trained and deployed in the respective environment.
The authors used the same Foosball table as considered in this work. Further-
more, in [27] a Foosball goalkeeper was taught to defend the goal using DRL.
The authors used Deep Q-Learning [18] to train a goalkeeper agent on a variety
of direct shots at the goal. However, the authors used a discrete action space
that represents only lateral movements of the rod, disregarding rod rotations
altogether.
In [20] a robot hand could be taught to solve a Rubix cube. For this purpose,
the authors used a simulation in which the agent was trained and then used this
model to control a real robot hand. Thus it could be shown that by using a sim-
ulation, agents can be trained that achieve comparable results in reality. This
was also shown in [21] by using visual object recognition to position objects
by a robot hand as in a pictorial representation. In [30, 32, 31] agents learned
grandmaster-level behaviours for board games like Chess, Shogi and Go using
simulations. In [6], a complex training system was used to beat world champi-
ons in an online real-time strategy game. However, these works necessitated the
use of large training systems with numerous computing units, and the training
process for the agents took several weeks to several months.

3 Foosball Domain

The starting point of this work is the Foosball domain. Here, this work refers
to the semi-automated Foosball table developed by Bosch Rexroth shown in
Figure 1. In order to be able to train agents for this Foosball table, a simulation
with the CAD model of the Foosball table was recreated in Unity. With this sim-
ulation, a goalkeeper agent was already successfully taught to defend shots [27].
We extend the work from [27] to train striker and goalkeeper agents in this sim-
ulation. However, only two consumer laptops with the specifications mentioned
in Table 1 are available for this purpose. This has to be taken into account when
designing the training procedure, and therefore the efficiency of the training is
of great importance when determining the individual training components. At
the same time, the simulation is only an abstraction of the Foosball table, which
is why the simulation-to-reality gap must also be taken into account.

4 Single Agent DRL

In order to use DRL agents to control the striker and goalkeeper rods, the task
to be learned is formalized as an MDP, a suitable way to formally define an DRL
problem [35, p. 10, 12]. Additionally, a learning algorithm must be determined.
For this purpose, this section first defines potential dimensions of observation

4 A. Gashi, E. Hergenröther, G. Grieser

Table 1. Hardware specification of the available computational resources.

System model ThinkpadP1Gen2 Lenovo81NX

Processor Intel Core i7-9750H @ 2.60GHz Intel Core i7-9750H @ 2.60GHz

RAM 32.0GB 16.0GB

GPU NVIDIA Quadro T1000
NVIDIA GeForce GTX 1650
with Max-Q Design

and action space, as well as a reward function from the perspective of the striker
rod. Then, a DRL algorithm for training the agents is selected, followed by a
methodological determination of the observation and action space to be used for
multi-agent training.

4.1 Definition of MDP

Observation Space Observations depict state representations of an MDP. For
this purpose, the frequency and the representation of an observation must be
defined. Considering the observation frequency, it should be chosen as high as
possible on the one hand, in order to be able to draw precise conclusions re-
garding the selected actions, but on the other hand realistic regarding the real
problem domain, so that the simulation-to-reality gap remains small. The obser-
vation frequency chosen was 60 observations per second, as this is a frequently
used frequency in established DRL benchmark environments [5] and is within
realistic limits with respect to the human observation frequency of the eye [8,
23].
Feature vectors were chosen to represent observations, as this significantly re-
duces dimensionality compared to using images and eliminates the complexity
of image processing. Of particular importance is which observation channels are
made available to the agent for the selection of actions, as MDPs assume the
Markov-Property to be satisfied. Therefore information about both the rod and
the ball must be provided. Tables 2 and 3 present observation channels relevant
to rod and ball, respectively, and the value ranges used to encode this infor-
mation. Since no boundary values are known for the ball velocity, the range of
values here were limited to [−10, 10] in a zero-centered manner, in order to avoid
larger expressions that could negatively influence training stability.
However, this minimal configuration may not represent the optimal combination
of observation channels. One piece of information that is currently hidden from
the agent is the number and position of players on a rod. By adding this infor-
mation, the agent would not have to implicitly learn the number of players and
their respective positions, but could accurately track them via the observation
channels. Since the players are fixed to the rod and the distances between them
thus remain the same even when they move, all that is needed here is a scalar
value of the position of the players.
Furthermore, several works have investigated the influence of binary contact in-
formation on locomotion problems with the result that it can enable smaller

Foosball agents 5

Table 2. Observation channels regarding
the Foosball rod with respective encoding

Observation channel encoding

Lateral rod position [−1, 1]
Angular rod position [−1, 1]
Lateral rod velocity [−1, 1]
Angular rod velocity [−1, 1]

Table 3. Observation channels regarding
the Foosball ball with respective encoding

Observation channel encoding

x-coordinate ball [−1, 1]
z-coordinate ball [−1, 1]

x-velocity ball [−10, 10]
z-velocity ball [−10, 10]

performance gains [26]. From this, two potential observation channels can be
derived: binary contact information and binary range information, where the
binary contact information indicates a contact between player and ball and the
binary range information indicates when the ball is in range of the striker rod.
In the context of this work, the focus is on an efficient training of agents, which
has to be considered when determining the observation channels to be used.
For this purpose, the method described in [15] was used to determine an opti-
mal observation space. The experimental setup and the results of this method
are explained in more detail in section 4.3, since an action space and a reward
function must first be defined for this purpose.

Action Space The action space of a Foosball rod can be divided into two
dimensions: the angular and lateral movement of the rod. Here, the encoding of
both dimensions has to be determined, which can be continuous or discrete in
nature. In [14], it was shown that by discretizing action spaces, training efficiency
could be significantly increased. However, [33] showed that while discretization
can be advantageous in complex tasks, in simpler tasks a continuous action space
can be essential for achieving a high return.
To determine the encoding for the action space, an experiment was held to
compare discrete and continuous value ranges. This experiment will be explained
in section 4.4, because for this a reward function has to be determined first.

Reward Structure The goal of the Foosball striker is to score goals. At the
same time, it must be avoided that the ball gets behind the striker. Thus, it is
first noted that a positive reward is given for a goal and a negative reward is
given if the ball gets behind the striker. If we assign a value of 1 for a positive
reward and -1 for a negative reward, we can assume that scoring goals is just
as important to the agent as defending the ball. However, since there are wide
walls next to the goal, the probability of the ball bouncing back when using
a random policy is much higher than randomly shooting goals. Since this can
quickly create a negative incentive to refrain from shooting altogether, a negative
reward of -0.1 is chosen instead of the negative reward of -1. With this ratio of
1
10 it can be assumed that the incentive to shoot is still maintained despite initial
bounces. At the same time, it can be assumed that optimizing a policy leads to
the prevention of wall bounces.

6 A. Gashi, E. Hergenröther, G. Grieser

However, to make the training more efficient, the method potential-based reward
shaping (PBRS) is used [19]. This allows a policy-invariant condensation of the
reward function. For this the ball position on the field is used to define a potential
function ψstriker:

ψstriker(St) =
ψstriker
x (XSt) + ψstriker

z (ZSt)

2
(1)

where ψstriker
x and ψstriker

z describe the potential of the ball with respect to its
x- and z-coordinate respectively. Given the encoding [−1, 1] of the x-coordinate
of the ball, where the striker rod represents the value 1 and the goal the value
-1, ψstriker

x can be defined as the following linear function resulting in the value
range of [0, 1]:

ψstriker
x (XSt

) = −0.5XSt
+ 0.5 (2)

where XSt
denotes the x-coordinate of the ball at state St and time step t.

However regarding the z-coordinate, the width of the goal corresponds to the
range [−0.26, 0.26], which should be equivalent to the highest potential value of
1. The potential of the ball’s z-coordinate decreases with values below or above
the goal width. In order to represent that, the following non-linear potential
function ψstriker

z is used, which clips the potential values at 1 and results in the
value range [0, 1]:

ψstriker
z (ZSt

) = min(−1.36|ZSt
|+ 1.36, 1) (3)

where ZSt
denotes the z-coordinate of the ball at state St and time step t.

This results in the following shaping-reward function F (St, St+1) based on [19]:

F (St, St+1) = γψstriker(St+1)− ψstriker(St) (4)

where γ <= 1 is the discount factor of the environment and St represents the
state at time step t. Given the value ranges of ψstriker

x and ψstriker
z being [0, 1],

the value range of the shaping-reward function becomes [−1, 1].
Combining this shaping-reward function F and the rewards for the terminal
states of the MDP concludes to the following reward function from the striker
perspective:

R(St, At, St+1) =

 1 if St+1 = goal event
−0.1 if St+1 = ball behind striker event

F (St, St+1) otherwise
(5)

4.2 DRL-Algorithm

Proximal Policy Optimization (PPO) [29] is used as the DRL algorithm, since
it is suitable for discrete and continuous action spaces and was successfully used
in the Foosball domain [9] as well as complicated multi-agent environments [6,
36]. However, the implementation to be used must also be considered. As shown
in [10], individual source code optimizations can have a greater impact on the

Foosball agents 7

result than a different choice of learning algorithms. Due to this the implemen-
tation Stable-Baselines3 (SB3) is used [25]. It has the source code optimizations
mentioned in [10], a high test coverage and was already used in further work
[14].

Hyperparameter PPO has several hyperparameters that can sensitively influ-
ence learning behavior. In this context, hyperparameter determination is often
a task that takes a lot of time [12]. Since computational resources are limited
and multiple experiments are to be performed in this work, a time-consuming
hyperparameter search is not performed. Nevertheless, in order to be able to
select hyperparameters that enable learning, the work of [3] is consulted, which
represents a systematic investigation of individual hyperparameters for on-policy
learning. Furthermore, the optimized hyperparameters for SB3 in known DRL
benchmark environments mentioned in [24] are used, since these have been specif-
ically determined for the implementation using Optuna[1]. Last, the work of [9]
and the hyperparameters used there are also considered, since the authors also
use the Foosball domain and teach a striker rod to shoot. Table 4 shows the
determined hyperparameters for the PPO implementation of SB3, where [24, 3]
stated that the neural network width and learning rate depend on the complexity
of the environment and can cause significant drops in performance if set poorly.
Additionally, we use running mean normalization, since this is also an important
source code optimization as described in [10].

Table 4. Defined Hyperparameter for PPO based on [3, 9, 10, 24]

Hyperparameter Value Source

clip range value function 0.2 [10]
max grad norm 0.5 [10]
entropy coefficient 0.01 [24, 9, 3]
value function coefficient 0.5 [10]
advantage normalization true [24]
orthogonal initialization true [10]
network type fully connected [24, 3]
network layers 2 [24, 3]
neurons per layer 64 [24, 3]

Hyperparameter Value Source

activation function tanh [10]
learning rate 3e-5 [24, 3]
rollout length 2048 [3]
minibatch size 64 [24, 3]
amount epochs 10 [3]
discount factor 0.99 [3]
GAE lambda [28] 0.95 [24, 9]
clip range 0.2 [10]

4.3 Evaluation of Observation Space

The optimization algorithm described in [15] is used to determine the observation
channels to be used. The initial observation space is determined as a combina-
tion of the rod and ball observation channels as shown in Tables 2 and 3. The
reward function mentioned in section 4.1 is used. Figure 2 represents the initial
situation of an episode. The ball is randomly placed in front of the players of the

8 A. Gashi, E. Hergenröther, G. Grieser

Fig. 2. Initial state distribution for striker rod. The red lines mark the areas where the
ball can randomly spawn at the beginning of an episode.

striker rod at the start of an episode, as represented by the red lines. The striker
rod is placed in the middle lateral position at the beginning of each episode with
the players in the vertical position. This is to keep the initial state distribution
small to allow efficient learning on the available computational resources [26].
If the ball stops in an area that the striker rod cannot reach, the episode is
terminated. Here, the infinite bootstrap trick elaborated in [22, 26] is used to
provide a distinction between terminal states in the MDP and termination after
timeout.
A continuous two-dimensional action space with the value range [−1, 1] is used.
The experiment was repeated with five different random seeds, as the network
initialization can influence the performance of an agent greatly [11]. In [9], a
striker agent was successfully taught to shoot after only 48 hours, with a sig-
nificant reward achieved after only 24 hours. Since the neural network used in
this work, with two hidden layers and 64 neurons each [64, 64], is significantly
smaller than the one used by the authors [512, 512], a training duration of eleven
hours is used, which corresponds to 1050 rollouts or approximately 2.16 million
time steps in the simulation.
Comparing the achieved performance with the initial observation space and the
initial observation space with player positions in Figure 3, it can be seen that by
using the player positions, a slight improvement of about 5.3% could be achieved,
measured using the maximum achieved values of both.
Now, to determine whether this combined observation space has harmful ob-
servation channels, the dropout permutation test described in [15] is applied.
First, the five trained agents were evaluated over 100 episodes and the achieved
reward per episode was recorded. This value is used as a baseline for calculating
an importance score for each observation channel. To calculate this, the individ-
ual observations were saved during training and histograms were created for the
respective observation channels. For the dropout permutation test, data from
the histogram was used for individual observation channels instead of data from
the current episode in order to provide the agent with false but realistic data.
This was done for each observation channel and all five trained agents for 100
episodes and the achieved reward per episode was recorded. By relating these
perturbed reward values to the baseline reward value, the importance scores
shown in Figure 4 are obtained, where a negative importance score represents a

Foosball agents 9

useful observation channel and a positive score represents a harmful one.

Fig. 3. Average cumulative reward per roll-
out describing the effect of player observation
channels. The shaded area represents the re-
spective bootstrapped 95% confidence inter-
val.

Fig. 4. Importance score of the individual
observation channels compared to base-
line, based on [15].

The results show that all observation channels achieve a negative importance
score. Nevertheless, to test whether reduced dimensionality has a positive effect
on learning efficiency, the observation channel with the lowest importance score
is removed and the experiment is repeated with the same seeds. Figure 5 shows

Fig. 5. Average cumulative reward per roll-
out describing the effect of removing the
least important observation channel regard-
ing its importance score. The shaded area
represents the respective bootstrapped 95%
confidence interval.

Fig. 6. Average cumulative reward per roll-
out describing the effect of binary observa-
tion channels. The shaded area represents
the respective bootstrapped 95% confidence
interval.

that removing the observation channel with the worst importance score has a

10 A. Gashi, E. Hergenröther, G. Grieser

negative impact on the achieved cumulative reward. Consequently, no observa-
tion channel is removed, as all other observation channels have better importance
scores. If we now add the binary observation channels from section 4.1 and com-
pare the obtained rewards, we see in Figure 6 that they have a strong negative
effect on learning.
Due to this, the initial observation space will be extended with the player posi-
tions of the rod. At the same time, however, it should be noted that the learning
curve does not yet show saturation. This can be an indication that a higher
training duration can lead to a better performance.

4.4 Evaluation of Action Space

The same experimental setup as in section 4.3 was used, as well as the final
observation space from section 4.3. However, since no saturation of the learning
curves could be shown, the training duration for this experiment is doubled to
22 hours or 2100 rollouts. This experiment is also repeated with five different
random seeds. Here, a two-dimensional action space is compared with a contin-
uous and discrete coding. For the continuous value space [−1, 1] is chosen for
both dimensions. A discrete encoding can be mapped both one-dimensionally or
discretely and multi-dimensionally or multi-discretely. However, in [14] it could
be shown that multi-discrete action spaces allow more efficient learning, which
is why this variant was used. As discretization factor in [33], the value 11 could
convince in different environments, which is why this value is used here as well.
Thus, these action spaces are compared with each other.

Fig. 7. Average cumulative reward per roll-
out with initial hyperparameter configura-
tion. The shaded area represents the respec-
tive bootstrapped 95% confidence interval.

Fig. 8. Average cumulative reward per roll-
out with increased learning rate and neural
network width. The shaded area represents
the respective bootstrapped 95% confidence
interval.

Figure 7 shows that the multi-discrete action space achieves a higher reward
up to approx. rollout 1600. After rollout 1600, however, both curves converge
strongly, which is why a final classification is difficult. At the same time, it was

Foosball agents 11

observed that no significant increase in reward could take place despite double
the training duration. For this reason, the experiment is repeated with adjusted
hyperparameters. First, the learning rate is increased to 3e−4, since the slope
of the reward curves is relatively low. Second, the network width is doubled to
[128, 128], since according to [3] this hyperparameter can have a large impact on
the performance of the agents. The result of the adjusted parameters is shown
in Figure 8. It can be clearly seen that the adjusted hyperparameters led to
a strong improvement with the multi-discrete action space, but made learning
with a continuous action space much more difficult. The worsening of the re-
sults for continuous action space with increased learning rate and larger network
may indicate that the use of a continuous action space is harder to learn and
therefore benefited from a smaller learning rate. This would also be in line with
the results from [3], where a smaller learning rate may be essential especially in
more complex environments. For the multi-agent training, this work continues
with the multi-discrete action space.

5 Multi-Agent DRL

Foosball represents a domain in which two players play against each other. It
follows that a good striker agent must be able to play well in a team and well
against an active opponent, among other things. Thus, while a striker can be
trained alone to learn the dynamics of the ball, this is no substitute for training
against an active opponent who can pursue his own strategies. This is why
training a striker agent requires an active opponent. In the case of this work,
striker and goalkeeper agents are trained together for this purpose. This requires
an extension of the MDP defined in section 4.1. In order to train the agents with
each other, a modeling of the opponent’s policies has to be done and a method to
determine the training partners has to be defined. Finally, the designed training
concept is executed in an experiment and the results are evaluated.

5.1 Extension of MDP

Since each agent has its own action space, the action space for both agents each
remains a two-dimensional multi-discrete action space with dimensions [11, 11].
Nevertheless, the agents’ environment is extended by adding an opponent rod,
which requires the observation space of striker and goalkeeper agents to be ex-
tended by their respective information regarding the opponent. At the same
time, the defined reward function has to be analyzed and modified, since it is
only focused on the striker agent and now has to be extended to include the
goalkeeper as well.

Observation Space The opposing player is not part of the observation space
and thus cannot be explicitly considered when selecting an action. To counteract
this and to make the training easier, information about the opponent is added
to the observation space. Therefore, the observation space contains the lateral-

12 A. Gashi, E. Hergenröther, G. Grieser

and angular position and -velocity of each agent, as well as the ball position and
velocity.

Reward Structure To determine the reward function of each agent, their
objectives are considered. The objective of a goalkeeper is to prevent goals, while
the objective of a striker is to score goals. Because of these strictly opposite
objectives, it is suitable to define it as a zero-sum Markov game. A zero-sum
Markov game is a Markov game in which the reward of one agent is the negative
reward of another agent in the environment. While this is trivial for the goal-
and ball-behind-striker-events, the potential function of both agents has to be
redefined in order to fulfill the zero-sum requirement. As defined earlier, for the
striker both the x- and z-coordinate of the ball are important, as the goal is
only in the middle of the field. However, this is not the case from the goalkeeper
perspective. The goalkeeper has to shoot the ball past the striker rod, which can
happen at an arbitrary z-coordinate. Therefore, the potential function of the
goalkeeper only regards the x-coordinate of the ball as follows:

ψgoalkeeper(St) = 0.5XSt + 0.5 (6)

where XSt
describes the x-coordinate of the ball at state St and time step t. Fi-

nally, for the potential functions to fulfill the zero-sum requirement, the following
potential functions ψ′ are used respectively:

ψ′ goalkeeper(St) = (ψgoalkeeper(St)− ψstriker(St))/2 (7)

ψ′ striker(St) = (ψstriker(St)− ψgoalkeeper(St))/2 (8)

5.2 Adversarial Training

In [4], the authors tested how training with only one training partner compared
to training with multiple training partners. Their results showed that training
with only the most current training partner resulted in an imbalance in training.
Using different training partners of different strengths led to more stable training
and learning of more robust policies by both agents. Therefore, an ensemble of
agents is used for training in this work. This raises the possibility of using a
centralized critic, which will be discussed. Furthermore, it has to be determined
whether only one type of agent should be used for striker and goalkeeper rod and
how the opponent selection should be performed. Finally, the episode structure
has to be redefined so that striker and goalkeeper agents can train with each
other.

Centralized vs. Decentralized Critic Since PPO is an actor-critic algorithm,
it uses an actor network and a critic network. This circumstance was used in [36]
to provide the critic network with more information than the agent has available
in the subsequent evaluation environment. Through this, the true value function

Foosball agents 13

of the environment should be better approximated by the critic network, allowing
better policies to be learned by the actor network during training. This approach
is referred to as Centralized Training for Decentralized Execution (CTDE) [36].
The impact of centralized critics was studied in [17]. In their empirical evaluation,
the authors concluded that the choice between centralized and decentralized
critics is equivalent to a bias-variance tradeoff, since decentralized critics have a
higher bias due to the use of less data and learn less correct value function than
centralized critics. At the same time, it was observed that decentralized critics
consistently performed more robustly than centralized critics in the environments
they used, as more stable adaptations of the networks in these environments seem
to be more important than more correct estimation of the value function. Due to
the diversity of the environments used by the authors, as well as the consistently
positive results achieved by decentralized critics in those, decentralized actor-
critic architectures for goalkeeper and striker agents are used in this experiment.

Modelling of Adversarial Policies It is necessary to determine whether one
agent should be trained for striker and goalkeeper rod or one agent for each rod
type. This type of self-play is often used in symmetrical environments where it
does not matter on which side an agent is positioned in each environment. In
this work, however, this is not the case, as both rods have different movement
constraints and a different number of players per rod. At the same time, the
goalkeeper rod has a wall from which balls can bounce without problems and
raised corners that influence the ball dynamics. Thus, due to the asymmetry of
the game, the use of different agents for each striker and goalkeeper is suitable.
This method was also used in [4] for asymmetric games like kick-and-defend or
you-shall-not-pass.

Opponent Selection Different works have taken different approaches to train-
ing partner selection. In [38], the authors evaluate these different approaches and
develop a framework for training partner selection. They show through experi-
ments in different environments that their approach achieves better results than
using the most recent, the historically best, or a random historical agent. This
algorithm is chosen as the method for opponent selection in this work. Here, an
ensemble of agents of size n is trained over N iterations. At the beginning of an
iteration, the strongest opponent is determined for each agent. For this purpose,
an evaluation over m episodes takes place by competing each agent with each
other. After the evaluation, the strongest training partner is determined for each
agent and deployed into the environment as a stationary opponent. The agent to
be trained is trained against this stationary opponent for a duration of l steps.
This takes place for all n agents per iteration N .
Thus, four parameters need to be determined for the use of this algorithm: The
number of iterations N , the size of the agent ensemble n, the training dura-
tion per iteration l, and the number of episodes for the evaluation of the agent
strength m. Since only small computational resources are available, the number
of iterations N is kept small while the duration of a training l is increased. This

14 A. Gashi, E. Hergenröther, G. Grieser

is to increase the stationarity of the environment, which should contribute to
more stable learning.
Furthermore, in section 4.4, convergence of the striker agent could be observed af-
ter about 1200 rollouts or 12 hours. Based on this, the training duration l = 1200
rollouts is set. As in the experiments before, the number of episodes for evaluat-
ing the agent strength m is chosen to be 100. Like in [38], parallel runs are used
to reduce the training duration by training striker and goalkeeper agents each
in parallel in two environments.
The ensemble size evaluated by the authors was 2,4 and 6, with a larger en-
semble consistently resulting in stronger agents. In the context of this work, an
ensemble of n = 4 agents is chosen, which corresponds to four striker and four
goalkeeper agents. This is to promote stability in training compared to using
two agents at a time.
Considering this ensemble size and the training duration per iteration, one iter-
ation takes about 48 hours on the available hardware. For this reason, a small
number of iterations of N = 3 is specified, which corresponds to a total training
time of about 144 hours for a total of 4 striker and 4 goalkeeper agents and a
total training time per agent of 3600 rollouts or 36 hours.

Episode Structure When determining the episode definition, it is important
to ensure that the difficulty levels of both agents are as similar as possible to
avoid unstable training with early dominance of one agent. At the same time,
care should be taken to ensure that the initial state distribution is kept narrow,
as in the previous experiments, in order to increase training efficiency. For this,

Fig. 9. Initial state distribution for striker and goalkeeper rod. Red and blue represent
where the ball spawns in front of the striker- and goalkeeper rod, respectively. The
initial state distribution for the goalkeeper rod is larger compared to the striker rod.

the ball is placed alternately in front of the striker and goalkeeper rods. For the
striker, the ball is placed randomly on the red lines in Figure 9, as in the previous
trials, since this allowed a good policy to be learned, but it was not too easy to
converge directly. For the goalkeeper, there are several aspects to consider. First,
the goal to be defended is much smaller compared to the striker. Furthermore,
the goalkeeper has only one figure instead of three, and has goal walls that are
supportive in this scenario. Therefore, it can be assumed that the goalkeeper

Foosball agents 15

has a much easier task to learn than the striker. To compensate for this, a wider
initial state distribution is determined for the goalkeeper. This is to prevent the
goalkeeper agent from quickly getting into a dominant position over the striker
agent. This can also be seen in Figure 9. Here, the ball appears randomly on the
blue line, which is significantly wider than the striker’s line. Except for these
changes, the same episode definition is used as in the experiments before, i.e.
the use of a time limit and ending an episode when the ball is not reachable by
any rod and comes to a stop.

6 Discussion

The learning behavior is compared on the basis of the achieved reward curves
of the striker and goalkeeper agents. From this, conclusions about the training
process will be drawn. Afterwards, observable strategies of the agents during the
training will be described and discussed.

6.1 Quantitative Analysis

Fig. 10. Average cumulative reward per rollout for games 1, 2 and 3 of goalkeeper
agents (red) and striker agents (blue). The shaded area represents the respective boot-
strapped 95% confidence interval. The second game starts at rollout 1200 and the third
at rollout 2400.

Figure 10 represents the run of all goalkeeper- and striker agents, each of
which had three games. The first game ends at rollout 1200. One can immedi-
ately see a clear discrepancy between the goalkeeper and striker reward curves.
Since the Markov game has been defined as a zero-sum game, the positive re-
ward of an agent is equal to the negative reward of the opposing agent. The
high discrepancy between the individual reward curves is an indication that the

16 A. Gashi, E. Hergenröther, G. Grieser

behaviors to be learned are of different difficulty for the striker and goalkeeper
rods. Since the goalkeeper consistently achieves a higher reward than the striker
from the beginning, it can be assumed that despite the goalkeeper’s more difficult
initial state distribution, the problem is nevertheless easier for the goalkeeper
compared to the striker. However, a positive learning behavior can be observed
for both types of agents. The graph shows that despite the consistently high
reward for the goalkeeper, it continued to increase over the course of the first
game. The striker’s reward curve also shows that the agents were able to achieve
a significant increase in reward over the course of the training. It should be noted
here that the respective training agents are trained with a stationary version of
the opponent, which allows both reward curves to increase despite being mod-
eled as a zero-sum game.
When looking at the second game, which starts at rollout 1200 and ends at roll-
out 2400, one can see a slight drop in the reward for the goalkeeper agent and a
significant drop for the striker. The goalkeeper agents were able to increase the
reward after the initial drop, while the rewards of the striker agents fluctuate
much more in comparison. This may indicate that the strategy learned by the
striker agent in the first game is not effective against the trained goalkeeper.
However, the increase in the striker’s reward in the second game may indicate
that the learned behavior from game 1 could be adapted to the trained goalkeep-
ers. The steady reward increase of the goalkeeper can be interpreted that even
after changing the opponent, the learned strategies did not need much change.
Looking at the third game from rollout 2400 until 3600 one can see a strong
increase of rewards for goalkeeper- and striker agents. Additionally, at the be-
ginning of the game only the striker agents experience a slight initial reward
drop, but recover after about 200 rollouts. The absence of this strong reward
drop might be an indication that the learned strategies are more resilient against
changing opponents. The goalkeeper agents were able to continuously increase
the reward, following the trend from the games before. Comparing this to the
striker agents, one can see that the striker reward curves have a higher variance
and seem generally more fluctuating, which can indicate that the goalkeeper
strategies seem more robust compared to the striker strategies.

6.2 Qualitative Analysis

In this section, observed strategies of striker and goalkeeper agents are shown.
These were recorded after the training and can be viewed at [16]. The strategies
observed can be classified into offensive and defensive categories. In this regard,
the goalkeeper agents will be discussed first.
Concerning the defensive strategies, one could see that the goalkeeper agent
considered the ball- as well as striker agent position in order to position itself
in between both, to avoid a direct shoot of the striker agent, as illustrated in
Figure 11 (1). Regarding the offensive strategies 11 (2), the goalkeeper learned
to shoot the ball quickly after the start of an episode in between the striker rod’s
players. One can observe a significant shooting speed, which can be, depending
on the spawn position of the ball, very difficult to catch for the striker agent.

Foosball agents 17

Additionally, a special shooting technique could be observed, which shows the
exploitation of the approximated simulation. When the ball was positioned in
front of the goalkeeper figure, the goalkeeper rod would position itself above
the ball, followed by a quick front-to-back rotation. This front-to-back rotation
made it possible to achieve particularly fast shots.

Fig. 11. Observed offensive and defensive strategies regarding goalkeeper- and striker
agent. From left to right: (1) defensive strategy goalkeeper (2) offensive strategy goal-
keeper (3) defensive strategy striker (4) offensive strategy striker

Regarding the defensive strategies of the striker rod 11 (3), one could see
that the rod tries to catch the ball with the most close figure, but is often too
slow to catch the fast shots of the goalkeeper agent. Interestingly, one could see
that the striker agent learned precise ball control skills, which are able to stop a
fast ball with a striker figure, damping its speed significantly. This can also be
observed in cases when the striker rod is not able to catch the ball with a figure,
but the ball travels very close to it. Then it can be seen, that the striker rod
stops its slight rotations completely.
Finally, looking at the offensive strategies of the striker 11 (4), one could see that
if the ball spawned at the left or right figure in a convenient position, the striker
agent immediately shoots at the goal. However, if the ball spawns in front of the
middle player, the striker agent does not shoot immediately. Instead, one could
observe a up-and-down lateral movement of the striker rod, followed by a shoot
several seconds later. One explanation for this could be, that the goalkeeper is
right in the way when spawning before the middle player, which makes waiting
a good choice until the goalkeeper agent moves out of the way.

7 Conclusion and Future Work

Considering the results, one can see that multi-agent training can be successful
with limited computational resources, thereby allowing an ensemble of striker
and goalkeeper agents to be trained with each other. Despite the observed im-
balance in difficulty levels for striker and goalkeeper agents, both types of agents
exhibited positive learning behavior, displaying the ability to learn advanced be-
haviors that consider the opponent’s actions. In addition, one could observe an

18 A. Gashi, E. Hergenröther, G. Grieser

increasing stability in the reward curves for both agent types, indicating learned
behaviour that is more robust against changing opponents. Our work extends
[27, 9], where we were able to train agents with a more complex action space [27]
in a shorter time [9] respectively, while also training in a more complex Markov
game environment with changing opponents. It can be concluded that the de-
signed training concept is suitable for the Foosball domain. However, as shown
in section 4.4, hyperparameters can have a large impact on the training behavior
of the agents. Here, the impact of optimized hyperparameters with respect to
multi-agent training would be an interesting aspect to explore. Additionally, it
should be investigated to what extent the imbalance in difficulty levels can be
compensated by longer training or changed environmental conditions, such as a
broader initial state distribution.
Further work can also look at using imitation learning [7] or pretraining [2],
training agents to an initial strength, followed by training in multi-agent environ-
ments. This could potentially increase training speed as environment dynamics
do not need to be learned from scratch in a complex multi-agent Markov game.

References

1. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation
hyperparameter optimization framework. CoRR abs/1907.10902 (2019). URL
http://arxiv.org/abs/1907.10902

2. Anderson, C.W., Lee, M., Elliott, D.L.: Faster reinforcement learning after pre-
training deep networks to predict state dynamics. In: 2015 International Joint
Conference on Neural Networks (IJCNN), pp. 1–7 (2015). DOI 10.1109/IJCNN.
2015.7280824

3. Andrychowicz, M., Raichuk, A., Stanczyk, P., Orsini, M., Girgin, S., Marinier, R.,
Hussenot, L., Geist, M., Pietquin, O., Michalski, M., Gelly, S., Bachem, O.: What
matters in on-policy reinforcement learning? A large-scale empirical study. CoRR
abs/2006.05990 (2020). URL https://arxiv.org/abs/2006.05990

4. Bansal, T., Pachocki, J., Sidor, S., Sutskever, I., Mordatch, I.: Emergent complexity
via multi-agent competition. CoRR abs/1710.03748 (2017). URL http://arxiv.
org/abs/1710.03748

5. Bellemare, M.G., Naddaf, Y., Veness, J., Bowling, M.: The arcade learning en-
vironment: An evaluation platform for general agents. Journal of Artificial In-
telligence Research 47, 253–279 (2013). DOI 10.1613/jair.3912. URL https:
//doi.org/10.1613\%2Fjair.3912

6. Berner, C., Brockman, G., Chan, B., Cheung, V., Debiak, P., Dennison, C., Farhi,
D., Fischer, Q., Hashme, S., Hesse, C., Józefowicz, R., Gray, S., Olsson, C., Pa-
chocki, J., Petrov, M., de Oliveira Pinto, H.P., Raiman, J., Salimans, T., Schlatter,
J., Schneider, J., Sidor, S., Sutskever, I., Tang, J., Wolski, F., Zhang, S.: Dota
2 with large scale deep reinforcement learning. CoRR abs/1912.06680 (2019).
URL http://arxiv.org/abs/1912.06680

7. Cai, X.Q., Ding, Y.X., Chen, Z.X., Jiang, Y., Sugiyama, M., Zhou, Z.H.: Seeing
differently, acting similarly: Imitation learning with heterogeneous observations
(2021). DOI 10.48550/ARXIV.2106.09256. URL https://arxiv.org/abs/2106.09256

8. Davis, J., Hsieh, Y.H., Lee, H.C.: Humans perceive flicker artifacts at 500 hz. Scien-
tific Reports 5(1) (2015). DOI 10.1038/srep07861. URL https://doi.org/10.1038/
srep07861

Foosball agents 19

9. De Blasi, S., Klöser, S., Müller, A., Reuben, R., Sturm, F., Zerrer, T.: Kicker: an
industrial drive and control foosball system automated with deep reinforcement
learning. Journal of Intelligent & Robotic Systems 102(1), 1–18 (2021)

10. Engstrom, L., Ilyas, A., Santurkar, S., Tsipras, D., Janoos, F., Rudolph, L., Madry,
A.: Implementation matters in deep policy gradients: A case study on PPO and
TRPO. CoRR abs/2005.12729 (2020). URL https://arxiv.org/abs/2005.12729

11. Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., Meger, D.: Deep
reinforcement learning that matters. CoRR abs/1709.06560 (2017). URL http:
//arxiv.org/abs/1709.06560

12. Hossain, M.R., Timmer, D.: Machine learning model optimization with hyper pa-
rameter tuning approach. Global Journal of Computer Science and Technology
(2021)

13. Janssen, R., de Best, J., van de Molengraft, R.: Real-time ball tracking in a semi-
automated foosball table. In: J. Baltes, M.G. Lagoudakis, T. Naruse, S.S. Ghidary
(eds.) RoboCup 2009: Robot Soccer World Cup XIII, pp. 128–139. Springer Berlin
Heidelberg, Berlin, Heidelberg (2010)

14. Kanervisto, A., Scheller, C., Hautamäki, V.: Action space shaping in deep rein-
forcement learning. CoRR abs/2004.00980 (2020). URL https://arxiv.org/abs/
2004.00980

15. Kim, J.T., Ha, S.: Observation space matters: Benchmark and optimization algo-
rithm. CoRR abs/2011.00756 (2020). URL https://arxiv.org/abs/2011.00756

16. Kitaird: kitaird/sai-foosball-agents: Initial release (2022). DOI 10.5281/ZENODO.
7199993. URL https://zenodo.org/record/7199993

17. Lyu, X., Xiao, Y., Daley, B., Amato, C.: Contrasting centralized and decentralized
critics in multi-agent reinforcement learning. CoRR abs/2102.04402 (2021). URL
https://arxiv.org/abs/2102.04402

18. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., Petersen, S., Beattie,
C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S.,
Hassabis, D.: Human-level control through deep reinforcement learning. Nature
518(7540), 529–533 (2015). DOI 10.1038/nature14236. URL https://doi.org/10.
1038/nature14236

19. Ng, A.Y., Harada, D., Russell, S.: Policy invariance under reward transformations:
Theory and application to reward shaping. In: In Proceedings of the Sixteenth
International Conference on Machine Learning, pp. 278–287. Morgan Kaufmann
(1999)

20. OpenAI, Akkaya, I., Andrychowicz, M., Chociej, M., Litwin, M., McGrew, B.,
Petron, A., Paino, A., Plappert, M., Powell, G., Ribas, R., Schneider, J., Tezak,
N., Tworek, J., Welinder, P., Weng, L., Yuan, Q., Zaremba, W., Zhang, L.: Solving
rubik’s cube with a robot hand (2019). DOI 10.48550/ARXIV.1910.07113. URL
https://arxiv.org/abs/1910.07113

21. OpenAI, Andrychowicz, M., Baker, B., Chociej, M., Jozefowicz, R., McGrew, B.,
Pachocki, J., Petron, A., Plappert, M., Powell, G., Ray, A., Schneider, J., Sidor,
S., Tobin, J., Welinder, P., Weng, L., Zaremba, W.: Learning dexterous in-hand
manipulation (2018). DOI 10.48550/ARXIV.1808.00177. URL https://arxiv.org/
abs/1808.00177

22. Pardo, F., Tavakoli, A., Levdik, V., Kormushev, P.: Time limits in reinforcement
learning. CoRR abs/1712.00378 (2017). URL http://arxiv.org/abs/1712.00378

23. Potter, M.C., Wyble, B., Hagmann, C.E., McCourt, E.S.: Detecting meaning in
RSVP at 13 ms per picture. Attention, Perception, & Psychophysics 76(2),

20 A. Gashi, E. Hergenröther, G. Grieser

270–279 (2013). DOI 10.3758/s13414-013-0605-z. URL https://doi.org/10.3758/
s13414-013-0605-z

24. Raffin, A.: Rl baselines3 zoo. https://github.com/DLR-RM/rl-baselines3-zoo
(2020)

25. Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., Dormann, N.: Stable-
baselines3: Reliable reinforcement learning implementations. Journal of Machine
Learning Research 22(268), 1–8 (2021). URL http://jmlr.org/papers/v22/20-1364.
html

26. Reda, D., Tao, T., van de Panne, M.: Learning to locomote: Understanding how en-
vironment design matters for deep reinforcement learning. CoRR abs/2010.04304
(2020). URL https://arxiv.org/abs/2010.04304

27. Rohrer, T., Samuel, L., Gashi, A., Grieser, G., Hergenröther, E.: Foosball table
goalkeeper automation using reinforcement learning. In: T. Seidl, M. Fromm,
S. Obermeier (eds.) Proceedings of the LWDA 2021 Workshops: FGWM, KDML,
FGWI-BIA, and FGIR, Online, September 1-3, 2021, CEUR Workshop Proceed-
ings, vol. 2993, pp. 173–182. CEUR-WS.org (2021). URL http://ceur-ws.org/
Vol-2993/paper-17.pdf

28. Schulman, J., Moritz, P., Levine, S., Jordan, M., Abbeel, P.: High-dimensional
continuous control using generalized advantage estimation (2015). DOI 10.48550/
ARXIV.1506.02438. URL https://arxiv.org/abs/1506.02438

29. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. CoRR abs/1707.06347 (2017). URL http://arxiv.org/
abs/1707.06347

30. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche,
G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman,
S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach,
M., Kavukcuoglu, K., Graepel, T., Hassabis, D.: Mastering the game of go with
deep neural networks and tree search. Nature 529(7587), 484–489 (2016). DOI
10.1038/nature16961. URL https://doi.org/10.1038/nature16961

31. Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot,
M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T.P., Simonyan, K., Hassabis,
D.: Mastering chess and shogi by self-play with a general reinforcement learning
algorithm. CoRR abs/1712.01815 (2017). URL http://arxiv.org/abs/1712.01815

32. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A.,
Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L.,
van den Driessche, G., Graepel, T., Hassabis, D.: Mastering the game of go without
human knowledge. Nature 550(7676), 354–359 (2017). DOI 10.1038/nature24270.
URL https://doi.org/10.1038/nature24270

33. Tang, Y., Agrawal, S.: Discretizing continuous action space for on-policy optimiza-
tion. CoRR abs/1901.10500 (2019). URL http://arxiv.org/abs/1901.10500

34. Weigel, T., Nebel, B.: KiRo – an autonomous table soccer player. In: RoboCup
2002: Robot Soccer World Cup VI, pp. 384–392. Springer Berlin Heidelberg
(2003). DOI 10.1007/978-3-540-45135-8 34. URL https://doi.org/10.1007/
978-3-540-45135-8 34

35. Wiering, M., van Otterlo, M. (eds.): Reinforcement Learning. Springer Berlin Hei-
delberg (2012). DOI 10.1007/978-3-642-27645-3. URL https://doi.org/10.1007/
978-3-642-27645-3

36. Yu, C., Velu, A., Vinitsky, E., Wang, Y., Bayen, A.M., Wu, Y.: The surprising ef-
fectiveness of MAPPO in cooperative, multi-agent games. CoRR abs/2103.01955
(2021). URL https://arxiv.org/abs/2103.01955

Foosball agents 21

37. Zhang, D., Nebel, B.: Learning a table soccer robot a new action sequence by
observing and imitating. In: J. Schaeffer, M. Mateas (eds.) Proceedings of the Third
Artificial Intelligence and Interactive Digital Entertainment Conference, June 6-8,
2007, Stanford, California, USA, p. 61. The AAAI Press (2007)

38. Zhong, Y., Zhou, Y., Peng, J.: Efficient competitive self-play policy optimization
(2020). DOI 10.48550/ARXIV.2009.06086. URL https://arxiv.org/abs/2009.06086

